Singular Spectrum Analysis: Methodology and Comparison
نویسندگان
چکیده
In recent years Singular Spectrum Analysis (SSA), used as a powerful technique in time series analysis, has been developed and applied to many practical problems. this paper, the performance of SSA tech nique considered by applying it well-known data set, namely, monthly accidental deaths USA. The results are com pared with those obtained using Box-Jenkins SARIMA models, ARAR algorithm Holt-Winter (as described Brockwell Davis (2002)). show that gives much more accurate forecast than other methods indicated above.
منابع مشابه
Singular Spectrum Analysis: Methodology and Comparison
In recent years Singular Spectrum Analysis (SSA), used as a powerful technique in time series analysis, has been developed and applied to many practical problems. In this paper, the performance of the SSA technique has been considered by applying it to a well-known time series data set, namely, monthly accidental deaths in the USA. The results are compared with those obtained using Box-Jenkins ...
متن کاملPredicting the Brexit outcome using singular spectrum analysis
In a referendum conducted in the United Kingdom (UK) on June 23, 2016, $51.6\%$ of the participants voted to leave the European Union (EU). The outcome of this referendum had major policy and financial impact for both UK and EU, and was seen as a surprise because the predictions consistently indicate that the ``Remain'''' would get a majority. In this paper, we investigate whether the outcome o...
متن کاملNonlinear Singular Spectrum Analysis by Neural Networks
Singular spectrum analysis (SSA), a linear univariate and multivariate time series technique , is essentially principal component analysis (PCA) applied to the time series and additional copies of the time series lagged by 1 to K time steps. Neural network theory has meanwhile allowed PCA to be generalized to nonlinear PCA (NLPCA). In this paper, NLPCA is further extended to perform nonlinear S...
متن کاملApproximate Projectors in Singular Spectrum Analysis
Singular spectrum analysis (SSA) is a method of time-series analysis based on the singular value decomposition of an associated Hankel matrix. We present an approach to SSA using an effective and numerically stable high-degree polynomial approximation of a spectral projector, which also provides a means of time-series forecasting. Several numerical examples illustrating the algorithm are given.
متن کاملTime Series Forecast with Singular Spectrum Analysis
We propose a novel approach for constructing Singular Spectrum Analysis (SSA) forecast based on estimating new coefficients of Linear Recurrent Formula. The results indicate that the proposed method is more reliable in comparison to the widely used approaches that were proposed along with SSA. We conduct simulation studies to compare the relative performance of the new method with the existing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of data science
سال: 2021
ISSN: ['1680-743X', '1683-8602']
DOI: https://doi.org/10.6339/jds.2007.05(2).396